
SEC Computing 4.8 Assembly Language Page 1

4.8 Assembly Language

An example of an assembly language instruction is: LDA #24

 the meaning of this instruction is: load (write) 24 in the accumulator

 LDA is called the operator

 #24 is called the operand

 if 10110 is the binary code for LDA, then 10110 is called the opcode (sometimes LDA
itself is called the opcode)

 LDA is also called a mnemonic

 example of an assembly language program:

rep: LDA #14 ; load the accumulator with 14
 ADD #31 ; add 31 to the contents of the accumulator
 JZE rep ; jump to ‘rep’ if accumulator contains zero
 HLT ; stop program execution

 in the above program ‘rep’ is called a label

Memory address modes tell you how the CPU accesses data.

Three commonly-used memory address modes are the following:

 Immediate

 Direct

 Symbolic

Immediate addressing means that the data is found inside the instruction itself.

Example:
 ‘LDA #12’ means: load 12 into A (the accumulator).

Advantage: very fast.
Disadvantage: the value in the instruction never changes.

Direct addressing means the code refers directly to a location in memory.

Example:
 ‘LDA 523’ means: load the contents of address 523 into A.

Advantage: fast (but not as fast as immediate addressing).
Disadvantage: the program cannot be relocated.

Re-locatable code refers to code that can be put anywhere in RAM.

Symbolic addressing means that the instruction instead of referring to an address refers to
a name (symbol).

Example: ‘LDA num’ means: load the contents of num into A.

SEC Computing 4.8 Assembly Language Page 2

Advantages:

 The program is re-locatable in memory.

 Using symbols makes the software much more understandable.

Data transfer instructions:

Note that what is written after the semicolon is a comment.

LDA x ; Load accumulator A with x
STA x ; Store contents of accumulator A in x

Arithmetic, Logical and Shift instructions:

ADD x ; Add contents of accumulator A with x

SUB x ; Subtract contents of x from accumulator A (A minus x)
MUL x ; Multiply contents of accumulator A with x
DIV x ; Divide contents of accumulator A by x
AND x ; Logical AND the contents of accumulator A with x (bitwise operation)
ORA x ; Logical OR the contents of accumulator A with x (bitwise operation)
NOT ; Logical NOT the contents of accumulator A (no operand).
SHL ; Logical shift contents of accumulator A to the left and introduce a 0 in the vacated

bit (no operand and bitwise operation).
SHR ; Logical shift contents of accumulator A to the right and introduce a 0 in the

vacated bit (no operand and bitwise operation).

Transfer of control instructions:

JMP x ; Jump to the instruction pointed to by the label x (unconditional jump)
JZE x ; Jump to the instruction pointed to by the label x if contents of accumulator is 0

(zero)
JNZ x ; Jump to the instruction pointed to by the label x if contents of accumulator is not 0

(zero)

Other instructions:

HLT ;End of program

